
CS 32
Lecture 1: oOPs

Textbooks

• Problem Solving in C++

• (CS 16) Chapters 10-18

• Data Structures with C++

• (CS 24) Chapters 12-14

• Reader

• SBPrinter at UCen

Grading

• Labs 20%

• Programming Assignments 20%

• 3 × “thirdterm” exams, each 20%

OOP

• Stands for Object-Oriented
Programming

• As if you didn’t know

• A way of factoring code

• A way of encapsulating code

CS 16

• Have seen arrays and strings

• And maybe vectors

• Right up to structs

• Next come objects

CS 24

• Have already been using classes

• And maybe templates

• Did you get as far as tree-traversal?

• Next come objects

Boundaries

• One of the basic ways we structure
our code is with boundaries

• Could call them interfaces

• It worked for living organisms

• Several times

Access

• Your object is the combination of

• state (values)

• behavior (functions)

Why Centralize?

• Easier to debug

• Responsibility (aka blame) is
easier to locate

• Easier to test

• Individual objects are very
amenable to unit testing

Encapsulation

• Why does the tortoise grow its shell?

• You want to be similarly defensive
with your code

• You manage access to the internal
state

But There’s More
• “I got my money the old-fashioned

way. I inherited it.”

• Things and their features (state and
functions) are not completely disjoint

• Car has many similar features as
Truck

• Should a Car be a kind of Truck?

• Should a Truck be a kind of Car?

DRY

• And there is always the desire to not
repeat mechanical patterns but to
factor them

• Abstraction vs Specialization

• OOP is driven as much by code
reuse as it is by encapsulation

Snake in the Garden

• Hierarchical types need hierarchical
type-checking

• An object’s type at runtime may be
different (a descendant) from the one
declared to the compiler

• Opens up a whole can o’ worms

History

• The idea was in the air in the 60s and 70s

• Smalltalk at Xerox PARC was the first to go
all-in

• In the 80s came C++ and Object Pascal

• Java, C#

• JavaScript?

• Objective-C, Swift

Top Down

• Tree-based inheritance structure

Subtypes

• Inheritance is isomorphic to
containment

• Subtypes are isomorphic to subsets

• It all seems so simple

• But…

Tension

• The services an object provides can
only expand as it gets more
specialized

• It still has to provide all the services
of its parent classes

Contravariance

• Two opposing forces

• Subclassing narrows the type

• but expands the services

Another Snake

• This led to unexpected problems in
language evolution

• Eiffel

• Santa Barbara grown!

• Clear clean Pascal-like language

Eiffel
class
 POINT
inherit
 ANY
create
 make, make_origin
feature -- Initialization
 make (a_x, a_y: INTEGER)
 make_origin
feature -- Access
 x: INTEGER assign set_x -- Horizontal axis coordinate
 y: INTEGER assign set_y -- Vertical axis coordinate
feature -- Element change
 set_x (a_x: INTEGER)
 set_y (a_y: INTEGER)
end

Programming Contract

• API between separate objects is a
contract

• So is the inheritance path in an OO
design

• This led to type-safety issues in
Eiffel

Multiple Inheritance

• Indirectly, maybe inadvertently

• Is repeated inheritance idempotent?

• In C++, issues with virtual vs. non-
virtual

• People got tired of it

Single Inheritance

• Class can inherit implementation from
only one parent

• Can implement any number of
interfaces/protocols/abstract classes

LSP

• Not a new drug

• Liskov Substitution Principle

• Named after Barbara Liskov

• Subtype must always be OK in
context expecting higher type

• Defining “OK” takes work

Co-Contravariance

• Descendant methods must require
less, guarantee more

• Preconditions weaker

• Postconditions stronger

Next Gen

• Java

• Comes with VM also

• Lacks generics

• No value types

C#

• Started out same time as Java

• Accused of copying

• Java and C# have diverged

JavaScript

• What’s the big deal with top-down
analysis anyway?

• Just take what exists, and modify it

• Self

• JavaScript

• Prototype-Based Programming

Add-Ons
• Some languages have added OOP features

• Perl

• Python

• JavaScript

• PHP

• MATLAB

• Lua

New Built-In

• Go

• Dart

• Scala

• Swift

Read!

• Reader #2 (Not #1)

• (most important)

• (CS 16) Problem Solving Chapter 10

• Less important

• (CS 24) Data Structures Chapter 12

• Even less (but don’t skip!)

