CS 32

Lecture 2. objects good?

“It’s an object, all right, but 1s it d’art?”

Double Vision

® [his course has two main tracks
e Unix/shell stuff
e Object—0Oriented Programming

e Basic C++ familiarity

e Off by one!

Another Troika

® This class has three main texts
o CS16 Problem Solving, Ch 10—

e CS 24 Data Structures, Ch 12-14

® Reader

® [ecture notes

e Off by one

Problem Solving

e CS16 Problem Solving, Ch 10-18
® Step—by—-step C++ course

® SO much for you there, if you read
deeply

e But who can?

e \We will go through most chapters

Data Structures

e CS 24 Data Structures, Ch 12-14
e Assumes you understand classes
® Develops good models of ADTs

e Stack, queue, graph, tree
e Next is the hash table

® Then search & sort

® [hen inheritance

Reader

1. Unix shells
2. OOP stuft
3. Unix processes
4. gcc, gdb, and make
e Refers to "Unix Shell”
5. Compilers, linkers, and make

6. Memory, pointers, and OOP stuff
/. Libraries and linking

Do the Dance

e The labs are also mixed between
Unix stuff and C++ stuff

e \We will try to lean toward the OOP/
C++ direction In the first half of the
course

® And of course the other direction —
the Unix/Shell — in the second

Object vs Class

® [erminology
e Object — a value (typ. local)
e |[nstance — a value (typ. pointer)
e Class — a type (typ. private)
e Struct — a type (typ. public)

Defining Classes

o PSCC++ chapter 10
e Starts out with struct

e \Why struct and not class?

e \What is difference”?

struct v. class

® Pretty much the same, except

® Cvery member (ivar, method) is
public

e Should be Iinterchangeable
otherwise

e Smaller projects have less access
control, and prefer struct

Structured Data

e Not just an 1nt or charx but a whole
named |ist

struct Date {
int month;
int day;
int year;

b

Getting Access

® YOUu expect to get or set these values
by referring to them with dot—syntax.

e Or arrow —> syntax

e C++ reminds you of the level of
Indirection

Reading

e Safer operation
® X = p—>X;
® Direct read presumed
® X = pP.X;
e |[n C++, you declared p without a *

e |n Swift, could be an accessor

Writing

e Usually allowed only for small structs
that are passed around by value

e Anything more complicated has
private sections and possibly filters
for setting

e p.x = 3 |ooks like plain assignment

e Could be a whole filter on that 3

C++ jsms

® Book says quite clearly implement the
toutput(ostream& outs) function

® [n Swift, implement the
description() method

e Your language has its equivalent

Constructors

® |f raw values are private, how do you
create objects with the values you
want?

® Constructors

e Universally invoked by name of Class
or Struct used like a function call

ey = new Thingy()

Variety

® Provide a variety of constructors

® Simple ones have default
assumptions

BankAccount(int dollars, int cents, double rate);

BankAccount(int dollars, double rate);
BankAccount ()

e May be funneled into one master
constructor

e Detalls vary by language

All in One

® Can sometimes accomplish this
with default variables in the
declaration

e void func(int a, int b=47);

e Much the same in most
languages

Declaring in C++

® As usual, two levels of Indirection to
choose from

® C myInstance(3);
e C xmyInstance = new C(3);
new C(3);

e Cx myInstance
o WTF?!

Local Storage

® C myInstance(3);
e Stored on the stack
® copled by value

® Access members with dot operator In
C++

® myInstance.1varl

Pointer

type dereferenced variable

® C xmyInstance

new C(3);
® nyInstance IS a pointer
® Data is on the heap
® Being memory—managed by... ?

® X = myInstance->1var3,

® x = (xmyInstance).ivar3;

Weird Syntax?

type variable pointer

new C(3);
e NMeans the same as previous

e Cx myInstance

® Has pitfall

® Cx myInstancel, myInstance?l;

e C xmyInstancel, mylInstancel;

Equality

® Most basic comparison between two
objects

e Comparing our date objects Is
something that should be handled by

the object itself
e But which one?

Two Ways

® Several options

e Provide an isEqualTo(C xother)

e Overload the == operator

e Section 11.2

Bane or Boon?

Widely derided as cluttering up C++
code (that other people wrote)

Great topic for flame wars
—ell out of favor
Jntil...

Better

e Two modern languages go all—in
o Swift

e Scala

e Ltven the bullt—Iin operators are
declared explicitly

public protocol Equatable {
public static func ==(1lhs: Self, rhs: Self) —> Bool

Important Overloads

e tquality
e Ordering (possibly)

e Streaming << and >>

No Inheritance

e No Trustafarians
e Not yet anyway

e \We haven't even looked much at
encapsulation

e Still looking at a structured value

OOP Proper

e OOP, otherwise unqualified, means
e Structured values
® Access control

® Type Inheritance

OOP Uber Alles?

e As the Reader points out, It was a big
fad for a while

® Hierarchical structures express a lot
about the relations between nodes

e But it's hard to start with a full top—
down factoring of things

e How else can we design?

Prototypes

e \What's the big deal with top—down
analysis anyway?

e Just take what exists, and modity It

* Self

e JavaScript

e Prototype—Based Programming

Functions

That take tunctions as parameters
And return functions

—verything Is a function call

—unction heaven

e But not the solution to all problems

Truce

e Both Scala and Swift make point of
allowing multiple kinds of
programming

® This will be the trend for general-
purpose languages

