
CS 32
Lecture 2: objects good?

Double Vision

• This course has two main tracks

• Unix/shell stuff

• Object-Oriented Programming

• Basic C++ familiarity

• Off by one!

Another Troika

• This class has three main texts

• CS16 Problem Solving, Ch 10-18

• CS 24 Data Structures, Ch 12-14

• Reader

• Lecture notes

• Off by one

Problem Solving

• CS16 Problem Solving, Ch 10-18

• Step-by-step C++ course

• So much for you there, if you read
deeply

• But who can?

• We will go through most chapters

Data Structures
• CS 24 Data Structures, Ch 12-14

• Assumes you understand classes

• Develops good models of ADTs

• Stack, queue, graph, tree

• Next is the hash table

• Then search & sort

• Then inheritance

Reader
1. Unix shells

2. OOP stuff

3. Unix processes

4. gcc, gdb, and make

• Refers to “Unix Shell”

5. Compilers, linkers, and make

6. Memory, pointers, and OOP stuff

7. Libraries and linking

Do the Dance

• The labs are also mixed between
Unix stuff and C++ stuff

• We will try to lean toward the OOP/
C++ direction in the first half of the
course

• And of course the other direction —
the Unix/Shell — in the second

Object vs Class

• Terminology

• Object — a value (typ. local)

• Instance — a value (typ. pointer)

• Class — a type (typ. private)

• Struct — a type (typ. public)

Defining Classes

• PSCC++ chapter 10

• Starts out with struct

• Why struct and not class?

• What is difference?

struct v. class

• Pretty much the same, except

• Every member (ivar, method) is
public

• Should be interchangeable
otherwise

• Smaller projects have less access
control, and prefer struct

Structured Data

• Not just an int or char* but a whole
named list

struct Date {
 int month;
 int day;
 int year;
};

Getting Access

• You expect to get or set these values
by referring to them with dot-syntax.

• Or arrow -> syntax

• C++ reminds you of the level of
indirection

Reading

• Safer operation

• x = p->x;

• Direct read presumed

• x = p.x;

• In C++, you declared p without a *

• In Swift, could be an accessor

Writing

• Usually allowed only for small structs
that are passed around by value

• Anything more complicated has
private sections and possibly filters
for setting

• p.x = 3 looks like plain assignment

• Could be a whole filter on that 3

C++ isms

• Book says quite clearly implement the
::output(ostream& outs) function

• In Swift, implement the
description() method

• Your language has its equivalent

Constructors

• If raw values are private, how do you
create objects with the values you
want?

• Constructors

• Universally invoked by name of Class
or Struct used like a function call

•y = new Thingy()

Variety
• Provide a variety of constructors

• Simple ones have default
assumptions

BankAccount(int dollars, int cents, double rate);
BankAccount(int dollars, double rate);
BankAccount()

• May be funneled into one master
constructor

• Details vary by language

All in One

• Can sometimes accomplish this
with default variables in the
declaration

•void func(int a, int b=47);

• Much the same in most
languages

Declaring in C++

• As usual, two levels of indirection to
choose from

•C myInstance(3);

• C *myInstance = new C(3);

• C* myInstance = new C(3);

• WTF?!?

Local Storage

•C myInstance(3);

• Stored on the stack

• copied by value

• Access members with dot operator in
C++

•myInstance.ivar1

Pointer

•C *myInstance = new C(3);

• myInstance is a pointer

•Data is on the heap

•Being memory-managed by… ?

•x = myInstance->ivar3;

•x = (*myInstance).ivar3;

type dereferenced variable value? pointer?

Weird Syntax?

•C* myInstance = new C(3);

• Means the same as previous

• Has pitfall

•C* myInstance1, myInstance2;

• C *myInstance1, myInstance2;

type variable pointer

Equality

• Most basic comparison between two
objects

• Comparing our date objects is
something that should be handled by
the object itself

• But which one?

Two Ways

• Several options

• Provide an isEqualTo(C *other)

• Overload the == operator

• Section 11.2

Bane or Boon?

• Widely derided as cluttering up C++
code (that other people wrote)

• Great topic for flame wars

• Fell out of favor

• Until…

Better

• Two modern languages go all-in

• Swift

• Scala

• Even the built-in operators are
declared explicitly

public protocol Equatable {
 public static func ==(lhs: Self, rhs: Self) -> Bool

Important Overloads

• Equality

• Ordering (possibly)

• Streaming << and >>

No Inheritance

• No Trustafarians

• Not yet anyway

• We haven’t even looked much at
encapsulation

• Still looking at a structured value

OOP Proper

• OOP, otherwise unqualified, means

• Structured values

• Access control

• Type inheritance

OOP Über Alles?

• As the Reader points out, it was a big
fad for a while

• Hierarchical structures express a lot
about the relations between nodes

• But it’s hard to start with a full top-
down factoring of things

• How else can we design?

Prototypes

• What’s the big deal with top-down
analysis anyway?

• Just take what exists, and modify it

• Self

• JavaScript

• Prototype-Based Programming

Functions

• That take functions as parameters

• And return functions

• Everything is a function call

• Function heaven

• But not the solution to all problems

Truce

• Both Scala and Swift make point of
allowing multiple kinds of
programming

• This will be the trend for general-
purpose languages

