
CS 32
Lecture 3: Reorganizing



Switch Gears
• Or horses in midstream 

• Will be using Phill Conrad’s course 
outline 

• Uses submit.cs uniformly 

• Labs about the same 

• Numerous small Programming 
Assignments 

• Coordinated with reading



First Lab

• Still will be the intro 

• Will be an intro to me and our TAs 
too 

• Let’s all hack together to make it 
work



Where We Were

• More than one way to skin a cat 

• Object-Oriented Programming 

• Prototype-Based Programming 

• Functional Programming 

• Aspect-Oriented Programming



Truce

• Both Scala and Swift make point of 
allowing multiple kinds of 
programming 

• This will be the trend for general-
purpose languages



Going Deep

• Author subtitles “Language and 
Thought” 

• Which isn’t lightweight chatter 

• Mentions Edward Sapir 

• Famous (or notorious) linguist



Edward Sapir

• “Human beings do not live in the 
objective world alone…but are very 
much at the mercy of the particular 
language…for their society.” 

• “We see and hear and otherwise 
experience as we do because [of] 
the language habits of our 
community.”



Grinds to Halt
• Author gives example of two different 

paradigms 

• One in FORTRAN 

• One in APL 

• Who followed that? 

• Classic moral 

• Algorithms count 

• Modern: C++ vs. Python



Language is All

• The Sapir-Whorf thesis 

• Goes in and out of favor 

• Right now it’s out of favor… 

• Oops, back in!



Left Turn?
• Author seems to tangent off into 

Church-Turing thesis 

• What is it with these hyphenated 
theses? 

• A function is human-computable iff 
it is computable by Turing Machine 

• Bold statement about 
consciousness?



Strange Opposite

• Church-Turing says “All languages 
are essentially the same” 

• Sapir-Whorf says “Every language is 
an island” 

• Who will win? 



The Nuts and Bolts
• OOP is useful in small doses 

• Platforms provide larger trees of 
classes 

• Ordinary people instantiate those 
classes, design their own small 
hierarchies 

• Manic people design their huge 
hierarchies and never graduate



The Truce

• Those OOP hierarchies may 
themselves use 

• Functional programming 

• Logical programming (e.g. Prolog) 

• Generic programming 

• Assembly coding



Down to Business

• OK, we know inheritance is useful 

• Let’s get on already with what it does



Hierarchy aka Tree

• Types are no longer individual things 

• They form a hierarchy 

• aka subset/containment relation 

• aka a Tree



Jump to Chapter 15?

• Inheritance doesn’t appear until 
Chapter 15 of PSC++ 

• Nodes, lists, stacks, queues 
intervene 

• Have we seen this in CS 24?



Go On In Reader

• Messages vs. function calls 

• What makes a method special? 

• It has a specific receiver 

• Function calls can mimic this by 
e.g. a default first parameter 



Dynamic

• Meaning of a message depends on 
the runtime type of the receiver 

• Runtime :: dynamic as  
buildtime :: static 

• Overused buzzwords too



Change

• Why would the runtime type of a 
variable be different to the compile-
type? 

•Animal* a; 

• a = new Feline(); 

• Why can’t compiler tell?



Fear Change

• And what if the runtime type of a 
variable is incompatible with its 
compile-time type? 

• Crash 

• Do nothing 

• Get rerouted



Switch Gears Again

• CS 16 was Problem Solving 

• Mostly concerned with teaching C++ 

• Covered Chapters 1 - 10 

• What was all that?



Recap of CS 16

• These are things you are expected to 
be familiar with already 

• Initializing variables 

• […much more…] 

• Pointers



Initializing

• Declaring a variable 

• A high-level concept 

• Pointers involved somewhere 

• Initializing a variable 

• Providing an explicit value



Initialize on the Spot

• int i(1); // C++ initializer 

• /* it’s complicated */ // Java 

• var count:Int = 3  // Swift

optional



Naming Things

• Two main problems in computing 

• Naming things 

• Caching things 

• Off-by one errors



Scramble

• Take a working program 

• Permute its variable names 

• Rebuild and… 

• …it still works!



Chaos
• In fact, any 1:1 mapping between 

variable names will preserve the 
program’s behavior 

• At most one variation will be 
unreadable 

• Clearly there must be some better or 
worse choices 

• But we all know this…, right…?



Single Words

• These are pretty easy 

• Nouns for object-y things 

• Verbs for process-y things



Collision

• Some words work as both nouns and 
verbs 

•Test 

• Query 

• Call 

• Set // and many more…



Double Trouble

• Compound variable names 

•underscore_style 

• camelCaseStyle 

• What is a SetQuery? 

• Or a CallTest?



Seen in the Wild

•UpdateThread 

• A function that updates a Thread 

• A particular kind (Update) of Thread 

• A function that threads an Update 

• ???



It Got Worse

•UpdateThreadBackup 

• Too many interpretations 

• And.. some variable names got 
swapped 

• Or otherwise out of sync



char broil

• The mysterious type char in C/C++ 

• 8 whole bits 

• aka one byte 

• A number from 0 to 255… (00-FF) 

• …or from -128 to 127 (80-7F)



Rome Still Conquers

• Eight bits are enough to encode the 
entire Roman alphabet with room to 
spare 

• The spare room got used in multiple, 
inconsistent ways



21st Century

• This will no longer hack it 

• wchar_t typedef worked… 

• …for a while 

• Some OS distributions give wchar_t 
just 16 bits



Best Practice?

• For char, use unsigned int 

• Don’t use char 

• If you do, it’s a signed byte



Braces

• Always use them

if a < b { 
    // Code here… 
} else { 
    // Code here… 
}

if a < b 
    // Code here… 
else 
    // Code here…

! "

if a < b { etc… } 
else     { etc… }

if you must



++ and –– Operators

• Make C-style looping work 

• for (i = 0; i < N; i++)  

• Each operator has two modes 

• prefix  ++i; 

• suffix   i++;



Expression v. Instruction

• i++ can either be 

• An instruction: increment i 

• An expression:  j = i++; 

• It’s both at once!



Who’s On First?

•j = i++ 

• Give me the value of i then increment 

•j = ++i 

• Increment i then give me the value



Used to Matter

• The distinction was important in 
getting performance out of certain 
processors 

• The first thing you did after compiling 
was look at the assembly code your 
compiler emitted



Fading Away

• Swift started with +=, -=, ++, and — 
operators 

• Swift 3 retired the ++ and — 



switch statements

• The more your program resembles a 
state machine, the more it will have 
switch statements 

• Gigantic if statement centered on 
one value 

• Sign of weakness?



Deciding

• Every program will have to have 
decisions 

• In modern languages, we decide with  
“dispatch” 

• OOP dynamic dispatch 

• switch considered harmful?



Sidebar

• goto Considered Harmful 

• March 1968, Dijkstra 

• Wirth changed the title 

• “goto Considered Harmful” Considered 
Harmful 

• March 1987, Rubin 

• ““goto Considered Harmful” Considered 
harmful” Considered Harmful



switch harmful?

• Back in favor 

• Swift has upgraded switch 
statements 

• Pattern matching 

• where clauses 

• Enum-aware



Scope

• Nesting function calls 

• Tracked with a LIFO (stack) 

• Locals vanish when you exit scope 

• But globals are frowned upon 

• What to do?



Pointers

• Everybody’s friend 

• Frenemy at best 

• Pointer is “one level of indirection” 
away from the value 

• Need the flexibility 

• Hate the consequences



Down With Globals?

• Pointers usually point to 

• Strings 

• Vectors or arrays 

• Instances of classes 

• aka objects



Mr Big

• Very often there are classes or data 
structures that are unique 

• Singletons 

• Can’t live with them 

• Can’t live without them



Read!

• Go on to Chapter 2 of Reader #2 

• Start reading Chapter 11, 12 of CS 16 
text PSC++ 

• Chapter 12 (searching and hashing) 
in CS 24 text DSC++


