
CS 32
Lecture 4: Searching

Naming Things

• Two main problems in computing

• Naming things

• Caching things

• Pointer vs. value

• Off-by one errors

Seen in the Wild
•UpdateThread

• A function that updates a Thread

• update:verb; thread:noun

• A particular kind (Update) of Thread

• update:adjective; thread:noun

• A function that threads an Update

• update:noun; thread:verb

First or Last?

• For a label object that will hold a
date, what should we name its
variable?

• dateLabel

• labelDate

• Note this violates previous advice

Code Completion

• If your IDE has code completion, it
will start with the first letters of
variable names

• Easier to use if the most generic part
of the name is first

• Good for alphabetical sorts also

• Where else do we see this?

Examples

• 2017-03-13

• Homo sapiens

• Mao Zedong

• Hungarian prefix notation

• ??? Must be more

Sidebar

• goto Considered Harmful

• March 1968, Dijkstra

• Wirth changed the title

• “goto Considered Harmful” Considered
Harmful

• March 1987, Rubin

• ““goto Considered Harmful” Considered
harmful” Considered Harmful

switch harmful?

• Back in favor

• Swift has upgraded switch
statements

• Pattern matching

• where clauses

• Enum-aware

Scope

• Nesting function calls

• Tracked with a LIFO (stack)

• Locals vanish when you exit scope

• But globals are frowned upon

• What to do?

Pointers

• Everybody’s friend

• Frenemy at best

• Pointer is “one level of indirection”
away from the value

• Need the flexibility

• Hate the consequences

Down With Globals?

• Pointers usually point to

• Strings

• Images

• Vectors or arrays

• Instances of classes

• aka objects

Mr Big

• Very often there are classes or data
structures that are unique

• Singletons

• Can’t live with them

• Can’t live without them

Linear Search

• Example given in the text

while i < n && !found {
 if a[i] // is the desired item {
 found = true;
 } else {
 ++i;
 }
}

Average Performance

• First-pass analysis gives  
(1+2+3+4+5+6+7+8+9+10)÷10 = 5.5

• Some assumptions there

• HW has a handout sheet on this

Convex Sum

• Particular case of this general idea

• X = a1p1 + a2p2 + … + anpn

• Where ∑pi = 1 (aka 100%)

• A linear combination

• Also used in atomic weights

Random Value

• X = a1p1 + a2p2 + … + anpn

• We say that X is a random variable

• Each time you ask it what it is, it
gives a different answer!

• But there could be an average
answer

Our case

• E[X] = 1∙10% + 2∙10% + … 10∙10%

• Same as before, comes out to 5.5

• Why are we going into this convex
sum stuff?

• Need it to improve the answer

Problems

• Calculation assumes each index is
equally likely to be the winner

• We will let that go by

• But also… what if search fails?

Solutions

• Let’s assume…

• Search fails half the time

• All other outcomes are equally likely

• What convex sum do we get?

Pessimistic

• E[X] = 1∙5% + 2∙5% + … 10∙5% + 10∙50%

• Comes to 7.75

• More fails ⇒ worse performance

Better Than This?

• Could there be any kind of search
more wonderful than linear search?

• Glad you asked

• Binary

• Hashing

• Who knows what else?

Binary Search
• Requires the elements be pre-sorted

• Which in turn implies a relation on the
elements

• Every pair of elements must be
comparable aka total ordering

• What orderings are not total?

• Subset relations

Sub-Problems

• Start in middle

• Which side must the target be in?

• Go to the middle of that side

• Repeat until… what?

Binary In Action

1 3 5 6 8 10 12 13 15 16 18 19 20 22 23

Search for 16

too
small

too
big

just
right

Book Code

• The book’s code is reasonable

• So many chances for off-by-ones

• You may have found this out in the
first lab

Basic Truth

• What sort of worst-case performance
would you expect?

• 𝘖(log2n)

• If you’ve taken CS 40, that is

• Otherwise we have to explain

Halving Function

• H(n) = the number of times you can
divide n by 2 before it gets to 1

• Very closely related to log2n

• Basically, off by 1

• Good way to teach logarithms

STL Searches

• Operations in <algorithm>

• Work with Iterators

• We will look at binary search

Code From Somewhere

• Uses templates

• What does that mean?

template< class ForwardIt, class T >
bool binary_search(ForwardIt first, ForwardIt last, const T& value);

template< class ForwardIt, class T, class Compare >
bool binary_search(ForwardIt first, ForwardIt last, const T& value, Compare comp);

Kinda Like Overloading
void printMe (string s) {
 cout << "string s = \"" << s << "\"" << endl ;
}

void printMe (int i) {
 cout << "int i = " << i << endl ;
}

void printMe (string s, int i) {
 cout << s << " " << i << endl ;
}

• Use overloading to do different
things to different types

But Different

• Use templates to do the same thing
to different types

template< class ForwardIt, class T >
bool binary_search(ForwardIt first, ForwardIt last, const T& value);

template< class ForwardIt, class T >
ForwardIt lower_bound(ForwardIt first, ForwardIt last, const T& value);

template< class ForwardIt, class T >
ForwardIt upper_bound(ForwardIt first, ForwardIt last, const T& value);

STL Has It All

• Algorithms are independent of
containers

• Specific versions of functions are
created at build time (aka statically)

• Try to use classes, &-references and
forget about pointers

Read!

• Problem Solving 8.3, 17, 18

• Which is Templates and STL

