CS 32

Lecture 4. Searching

“‘Hawve you tried searc/ying under ‘fruiz‘/ess’? ?

Naming Things

® Two main problems in computing
e Naming things
e Caching things

® Pointer vs. value

e Off—by one errors

Seen in the Wild

® UpdateThread
e A function that updates a Thread
® Update:verb; thread:noun
e A particular kind (Update) of Thread
® yUpdate:adjective; thread:noun
e A function that threads an Update

e Update:noun; thread:verb

First or Last?

e For a label object that will hold a

date, what should we name Its
variable?

e datelabel
e |[abelDate

e Note this violates previous advice

Code Completion

If your IDE has code completion, it
will start with the first letters of
variable names

Easier to use if the most generic part
of the name Is first

Good for alphabetical sorts also

Where else do we see this”?

Examples

2017-03-13

Homo sapiens

Mao Zedong

Hungarian prefix notation
7?7 Must be more

Sidebar

e goto Considered Harmful
e March 1968, Dijkstra
e \Virth changed the title

e "goto Considered Harmful” Considered
Harmful

e March 1987, Rubin

e “"“goto Considered Harmful” Considered
harmful” Considered Harmful

switch harmful?

e Back in favor

e Swift has upgraded switch
statements

e Pattern matching
e where clauses

® Enum—aware

Scope

® Nesting function calls
e Tracked with a LIFO (stack)

e [ocals vanish when you exit scope

e But globals are frowned upon
e \What to do”?

Pointers

e Everybody's friend
® Frenemy at best

e Pointer is “one level of indirection”
away from the value

e Need the flexibility

® Hate the consequences

Down With Globals?

® Pointers usually point to
® 5Strings
® |mages
® \/ectors or arrays

® |nstances of classes

® aka objects

Mr Big

e \/ery often there are classes or data
structures that are unique

® Singletons

e Can't live with them

e Can't live without them

Linear Search

e Example given In the text

while i < n && !found {
if alil // is the desired item {
found = true;
} else {
++1:
}
}

Average Performance

e First—pass analysis gives
(1+2+3+4+5+6+7+8+9+10)+10 =5.5

® Some assumptions there

e HW has a handout sheet on this

Convex Sum

e Particular case of this general idea
® X' =Qa1p1 + azp2 + - + anPn
e Where >pi =1 (aka 100%)

e A linear combination

e Also used in atomic weights

Random Value

e X = aip1 + azp2 + - + anPn
e \We say that X is a random variable

® Fach time you ask it what it is, it
gives a different answer!

e But there could be an average
answer

Our case

E[X] =1-10% + 2:10% + - 10-10%
Same as before, comes out to 5.5

Why are we going into this convex
sum stuff?

Need it to improve the answer

Problems

e (Calculation assumes each index iIs
equally likely to be the winner

e \We will let that go by

e But also... what If search fails”?

Solutions

e Let's assume...

® Scarch fails halt the time
e All other outcomes are equally likely

e \What convex sum do we get?

Pessimistic

 E[X]=15%+25%+ --105% + 10-50%
e Comesto /.75

e More fails = worse performance

Better Than This?

e Could there be any kind of search
more wonderful than linear search?

e (Glad you asked
e Binary

e Hashing

e \Who knows what else?

Binary Search

® Requires the elements be pre—sorted

e \Which In turn implies a relation on the
elements

e Lvery pair of elements must be
comparable aka total ordering

e \What orderings are not total?

® Subset relations

Sub-Problems

Start In middle
Which side must the target be in?
Go to the middle of that side

Repeat until... what?

Binary In Action

Search for 16

JPCTEE N foo
o DIg
1356810 12 13 15 16 18 19 20 22 23
L Y
just
right
too
small

Book Code

® The book's code is reasonable
® SO many chances for off—by—ones

e You may have found this out In the
first lab

Basic Truth

What sort of worst—case performance
would you expect?

O(logon)
If you've taken CS 40, that is

Otherwise we have to explain

Halving Function

e H(n) = the number of times you can
divide n by 2 before it gets to 1

® \/ery closely related to logzn
e Basically, off by T
e Good way to teach logarithms

STL Searches

e Operations in <algorithm>
e \Work with Iterators

e \We will look at binary search

Code From Somewhere

template< class ForwardIt, class T >
bool binary_search(ForwardIt first, ForwardIt last, const T& value);

template< class ForwardIt, class T, class Compare >
bool binary_search(ForwardIt first, ForwardIt last, const T& value, Compare comp);

e Uses templates

e \What does that mean”

Kinda Like Overloading

void printMe (string s) {
cout << "string s = \"" << 5 << "\"" << endl ;
s

void printMe (int i) {
cout << "int i =" << i << endl ;
I3

’

void printMe (string s, int i) {
cout << s << " " << 1 << endl ;
s

’

e Use overloading to do different
things to different types

But Different

template< class ForwardIt, class T >
bool binary_search(ForwardIt first, ForwardIt last, const T& value);

template< class ForwardIt, class T >
ForwardIt lower_bound(ForwardIt first, ForwardIt last, const T& value);

template< class ForwardIt, class T >
ForwardIt upper_bound(ForwardIt first, ForwardIt last, const T& value);

o Use templates to do the same thing
to different types

STL Has It All

e Algorithms are independent of
containers

® Specific versions of functions are
created at build time (aka statically)

e [ry to use classes, &—references and
forget about pointers

Read

e Problem Solving 8.3, 17, 18
e \Which is Templates and STL

