
CS 32
Lecture 5: Templates

Vectors

• Sort of like what you remember from
Physics…

• …but sort of not

• Can have many “components”

• Usually called entries

• Like Python lists

Array vs. Vector

• What’s the difference?

• In some languages, Array means
what Vector means here

• Array is C data type

• Vector is C++ class (really template)

Static Array

• int x[10];

• Locally allocated (auto/stack)

• Starts out filled with 0 (or junk)

• Statically laid out

• Fixed size

Dynamic Vector

•vector<int> v;

• Starts out empty

• New entries allocated dynamically

• Length can increase

• Made to look like it’s an array

Accessing Vectors

•v.push_back(3);

• Add 3 to end of vector; 𝘖(1)

• int i = v[5];

• v is an rvalue; 𝘖(1)

•v[7] = 8;

• v is an lvalue; 𝘖(1)

In-between Way

• Using pointers

•int* x = new int[10];

• int* x = (int *)malloc(10)  
// old-school

• x can passed outside of scope

• Storage in “free store” (heap)

• You must delete it

Those Brackets

• So what was up with the angle
brackets?

•vector<int> v;

• Or were they less-than/gt-than>?

• Used widely for holding parameters

• Specifically type parameters

First Example

• We already saw type params in use

• Creating a template is abstraction

• Variable part is factored-out

• Using a template is specialization

• A type is plugged in to dummy
variable T

template< class ForwardIt, class T >
bool binary_search(ForwardIt first, ForwardIt last, const T& value);

DRY

• Factoring is often motivated by this

• You write identical (or almost) code
in several places

• Factor out the commonalities into a
parameter

Value Params
int a = 2*3 + 2*7;
int b = 2*5 + 2*6;
int c = 2*11 + 2*77;

// Why am I redoing this?

int doubleSum(int x, int y) {
 return 2*x + 2*y;
}
int a = doubleSum(3, 7);
int b = doubleSum(5, 6);
int c = doubelSun(11, 77);

Type Params

• It’s just a convention to use T

• Book warning (p. 931) about not
writing template declarations

• Remember declaration vs. definition?

template<typename T>
void myGreatFunc(T& param1) {
 // Do a lot of stuff that doesn’t depend
 // on the actual type T
}

Example

• Swapping values

• Classic example

• Always requires a temp variable

• So always vulnerable to thread-
switching

• OSes provide “atomic” swap call

Generic Swap

• Type of swapped items is abstract

• You wrote this code a few times, said
“[bad words] I’m factoring this.”

template<typename T>
void swap(T& v1, T&v2) {
 T temp = v1;
 v1 = v2;
 v2 = temp;
}

Under the Hood

• What happens when you use the
template?

• The compiler uses the template to
create real function with the type
filled in

• So it is doing prototype-based
programming

Using It
• You write  

• The compiler creates  

• Type parameter int has been plugged

in

int i = 3; int j = 4;
swap(i,j); // Uh-oh, time to create an integer swap.

void swap(int& v1, int&v2) {
 int temp = v1;
 v1 = v2;
 v2 = temp;
}

Build On That

• Get a generic sorting function

template<typename T>
void swap(T& v1, T&v2) { // etc. }

template<typename BaseType>
int index_of_smallest(const BaseType a[], …) {
 // As before in Ch. 7
}

template<typename BaseType>
void sort(BaseType a[], …) {
 // Uses index_of_smallest()
}

Classy Templates

• Can pull the same trick with classes
as with functions

• Looks and works pretty much
similarly

template<typename T>
class MyGreatClass {…}

Say It Again

• Template design is abstraction

• Factoring out a type param

• Template use is specialization

• Plugging a type into the param

Fundamental The
Sy

no
ny

m
s

Antonyms
(Harder) (Easier)

Factor out Plug in

Parameterize Hard-code

Abstract Specific

Generalize Specialize

Integrate Differentiate

Synthesize Analyze

Innovate Imitate

Predict Review

STL

• Not Saint Louis airport code

• Not Standard Telegraph Level

• Standard Template Library

• Added in the 90s

STL Highlights

•vector

• stack (LIFO)

• queue (FIFO)

•set

•map

•iterators

Iterators
• More abstract kind of pointer

• Used for same purposes

• Made to look like a pointer

• I.e. has ++, ==, *, etc. defined

• Point into “container classes”

• vector, queue, …

• Container gives you the iterator

Out With The Old…

• Old-school

int* lots = // Lots of ints
for (int* p = lots; p < whatever; p++) {…}

• New-school

// c is an STL container
for (p = c.begin(); p != c.end(); p++) {…}

Tastes Like Chicken

• Define the iterator

// c is an STL container
vector<char>::iterator p = c.begin();

• All these are the same

•c[2]

• p[2]

• *(p + 2)

Im/mutable

• The most important distinction

• Const iterators don’t let you change
the item referred to

• vector<int>::const_iterator p = …

Containers
• You feel entitled to have them after

using a scripting language

•vector

• Like a dynamic array

•list

• Kinda the same

• What’s the difference?

list

• In C++, has specifically defined time
complexities

• Essentially this means it’s a
doubly-linked list

• Inserting/removing much faster
than with vector

slist

• Singly-linked list

• More efficient insertion/deletion

• Uses less memory than list

• Can only iterate forward

And the Rest

• queue (LIFO)

• For things waiting to be dealt with

• stack (FIFO)

• For nested things

•set

• For unordered things

The Best

• map

• also called that in Java, Go

• Dict in Python, Swift, Obj-C, C#

• Hash in Perl, Ruby

• Objects in JavaScript

Motivation

• Using integers to index arrays gets
boring

• Want more general mapping into
container

• Especially want container[“abc”] to
work

What’s Allowed In?

• Hash parameter (called “key”) must
be “hashable”

• I.e. be able to create from it a
number in a particular range

• Is “almost” unique

Looks the Same

• In Swift

public struct Dictionary<Key : Hashable, Value> : Collection {

public protocol Hashable : Equatable {
 public var hashValue: Int { get }

public protocol Equatable {
 public static func ==(lhs: Self, rhs: Self) -> Bool

Read!

• Problem Solving 10.2

• Which is Scoping and Encapsulation

